Ishrana je jedan od bitnih faktora koji može da dovede do ranijeg gubitka koštane gustine. Unos dovoljne količine voća i povrća, koje sadrže različite karotenoide (karoten, uključujući beta (ß)-kriptoksantin, lutein, likopen, ß-arotin, astakantin i rutin), ima podsticajnu ulogu u osteogenezi. Eksperimenti in vitro ukazuju da jedan od karotenoida, ß-kriptoksantin, ima dvostuku ulogu u homeostazi koštanog tkiva : inhibiše osteoklaste i na taj način smanjuje reapsorpciju koštanog tkiva, a sa druge strane stimulativno deluje na osteoblaste i uvećava koštanu gustinu. Cilj našega rada je bio da utvrdimo da li postoji korelacija između nivoa koštane gustine i nivoa karotenoida. Uradili smo ostodenzitometriju kod 52 žene, izmerili smo ukupni skor karotenoida u ljudskoj koži in vivo pomoću Ramanove spektroskopije. Nakon obrade dobijenih podataka našli smo značajnu negativnu korelaciju između stepena gubitka koštane gustine i nivoa karotenoida (p<0,05). nivoa karotenoida u koži (Skin carotenoid scor) je posledica oksidativnog stresa koja ima reperkusije i na koštano tkivo jer dolazi do povećanja reapsorpcije koštanog tkiva i do povećanja stepena gubitka koštane gustine.
Sahni S, Hannan MT, Blumberg J, Cupples AL, Kiel DP, Tucker KL. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: A 17-year follow-up from the Framingham Osteoporosis Study. Journal of Bone and Mineral Research. 2009;24(6):1086–94.
2.
Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA. Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. International Journal for Vitamin and Nutrition Research. 2008;78(3):105–11.
3.
Yamaguchi M, Uchiyama S. Receptor activator of NF-κB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. International Journal of Molecular Medicine. 2004;14(1):81–5.
4.
Yamaguchi M, Uchiyama S. β-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Molecular and Cellular Biochemistry. 2004;258(1–2):137–44.
5.
Yamaguchi M, Uchiyama S. Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: The unique anabolic effect of β-cryptoxanthin. Biological & Pharmaceutical Bulletin. 2003;26(8):1188–91.
6.
Yamaguchi M, Igarashi A, Uchiyama S, Sugawara K, Sumida T, Morita S, et al. Effect of β-cryptoxanthin on circulating bone metabolic markers: Intake of juice (Citrus unshiu) supplemented with β-cryptoxanthin has an effect in menopausal women. Journal of Health Science. 2006;52(6):758–68.
7.
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Molecular and Cellular Biochemistry. 2010;338(1–2):241–54.
8.
Williams JA, Kondo N, Okabe T, Takeshita N, Pilchak DM, Koyama E, et al. Retinoic acid receptors are required for skeletal growth, matrix homeostasis and growth plate function in postnatal mouse. Developmental Biology. 2009;328(2):315–27.
9.
Wang Y, Hodge AM, Wluka AE, English DR, Giles GG, O’Sullivan R, et al. Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: A cross-sectional study. Arthritis Research & Therapy. 2007;9(4):66.
10.
Vasić A, Relić G, Nestorović V. Osteoporoza. 2011.
11.
Uchiyama S, Yamaguchi M. Oral administration of β-cryptoxanthin prevents bone loss in ovariectomized rats. International Journal of Molecular Medicine. 2006;17(1):15–20.
12.
Uchiyama S, Sumida T, Yamaguchi M. Anabolic effect of β-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro. Journal of Health Science. 2004;50(5):491–6.
13.
Uchiyama S, Yamaguchi M. β-Cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: Change in their related gene expression. Journal of Cellular Biochemistry. 2006;98(5):1185–95.
14.
Uchiyama S, Sumida T, Yamaguchi M. Oral administration of β-cryptoxanthin induces anabolic effects on bone components in the femoral tissues of rats in vivo. Biological & Pharmaceutical Bulletin. 2004;27(2):232–5.
15.
Smidt CR, Shieh D. Non-invasive biophotonic assessment of skin carotenoids as a biomarker of human antioxidant status. FASEB Journal. 2003;17:1115.
16.
Barker FM. Dietary supplementation: Effects on visual performance and occurrence of AMD and cataracts. Current Medical Research and Opinion. 2010;26(8):2011–23.
17.
Sahni S, Hannan MT, Blumberg J, Cupples AL, Kiel DP, Tucker KL. Inverse association of carotenoid intakes with 4-year change in bone mineral density in elderly men and women: The Framingham Osteoporosis Study. American Journal of Clinical Nutrition. 2009;89(1):416–24.
18.
Ribaya-Mercado JD, Blumberg JB. Vitamin A: Is it a risk factor for osteoporosis and bone fracture? Nutrition Reviews. 2007;65(10):425–38.
19.
Peng YM, Peng YS, Lin Y, Moon T, Roe DJ, Ritenbaugh C. Concentrations and plasma-tissue-diet relationships of carotenoids, retinoids, and tocopherols in humans. Nutrition and Cancer. 1995;23(3):233–46.
20.
Pasco JA, Henry MJ, Wilkinson LK, Nicholson GC, Schneider HG, Kotowicz MA. Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. Journal of Women’s Health. 2006;15(3):295–300.
21.
Packer L. Human health, carotenoids and the Pharmanex® BioPhotonic scanner. 2002.
22.
Louis B, Cady MD. Founder and CEO: The validity of the Pharmanex BioPhotonic scanner and a review of the literature. 2008.
23.
Landi F, Capoluongo E, Russo A, Onder G, Cesari M, Lulli P, et al. Free insulin-like growth factor-I and cognitive function in older persons living in the community. Growth Hormone & IGF Research. 2007;17(1):58–66.
24.
Kim Y, Lian F, Yeum K, Chongviriyaphan N, Choi S, Russell RM, et al. The effects of combined antioxidant (β-carotene, α-tocopherol and ascorbic acid) supplementation on antioxidant capacity, DNA single-strand breaks and levels of insulin-like growth factor-1/IGF-binding protein 3 in the ferret model of lung cancer. International Journal of Cancer. 2007;120(9):1847–54.
25.
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International. 2006;17(12):1726–33.
26.
Ermakov IV, Sharifzadeh M, Ermakova M, Gellermann W. Resonance Raman detection of carotenoid antioxidants in living human tissue. Journal of Biomedical Optics. 2005;10(6):064028.
27.
Conaway HH, Persson E, Halén M, Granholm S, Svensson O, Pettersson U, et al. Retinoids inhibit differentiation of hematopoietic osteoclast progenitors. FASEB Journal. 2009;23(10):3526–38.
28.
Carlson JJ, Shayn S, Holubkav R, Zidichouski J, Mastaloudis A, Smidt C, et al. Associations of antioxidant status, oxidative stress, with skin carotenoids assessed by Raman spectroscopy (RS. 2008.
29.
Caire-Juvera G, Ritenbaugh C, Wactawski-Wende J, Snetselaar LG, Chen Z. Vitamin A and retinol intakes and the risk of fractures among participants of the Women’s Health Initiative Observational Study. American Journal of Clinical Nutrition. 2009;89(1):323–30.
30.
Bonjour JP, Schurch MA, Rizzoli R. Nutritional aspects of hip fractures. Bone. 1996;18(3 Suppl.).
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.