LYMPHOPOETIC FUNCTION OF THE THYMUS

S. Leštarević ,
S. Leštarević

Institute of Histology and Embriology, Medical Faculty Priština , Kosovska Mitrovica , Kosovo*

Z. Anðelković ,
Z. Anðelković

Institute of Histology and Embriology, Medical Faculty Priština , Kosovska Mitrovica , Kosovo*

N.B. Mitić ,
N.B. Mitić

Institute of Pathology, Medical faculty Priština , Kosovska Mitrovica , Kosovo*

Z. Milosavljević ,
Z. Milosavljević

Institute of Histology and Embriology, Medical Faculty Kragujevac , Kragujevac , Serbia

M. Milošević
M. Milošević

Institute of Phorensic medicine, Medical Faculty Priština , Kosovska Mitrovica , Kosovo*

Published: 01.01.2009.

Volume 37, Issue 1 (2009)

pp. 113-119;

https://doi.org/10.70949/pramed200901284L

Abstract

The process of multipotential lymphatic stem cell maturation and differentiation into immunocompetent T cells is accomplished by the expression and deletion of specific surface CD antigens. The CFU-Lstem cells enter the medulla of the thymus via a post capillary venule and then migrate to the periphery of the thymic lobule. The presence of CD2 and CD7 molecules on the cell surface indicates an early stage of differentiation. This is followed by expression of the CD1 molecule, indicating the midstage of Tcell differentiation. As maturation progresses, the cells express TCRs, CD3, CD4, and CD8 molecules. It seems that intensity of interreacion between TCR/co receptor molecule complex and self peptide/MHC complex determine the outcome of the thymocite selection process. If the lymphocyte recognizes self MHC and self or foreign antigen, it will survive the selection (positive selection); if not, death of the cell will occur. Cells that pass the positive selection test leave the cortex and enter the medulla. Here they undergo another selection process in which cells directed to selfantigen displayed by self MHC are eliminated (negative selection). Cells that survive that selection then become either cytotoxic CD8+ Tlymphocytes or helper CD4+ Tlymphocytes.

Keywords

References

1.
H.E. P, K. G, H.T P. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J Exp Med. 198:957–62.
2.
E.P. B, J.J. C, D. S, Z. D, N. M, D. P, et al. Developmental switches in chemokine response profiles during B cell differentiation and maturation. J Exp Med. 191:1303–18.
3.
C.C. B, T B. Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol. 30:3371–9.
4.
J.J. C, J P. Butcher E.C.: Cutting edge: developmental switches in chemokine responses during T cell maturation. J Immunol. 163:2353–7.
5.
C.H. K, L.M. P, J.R W. Broxmeyer H.E.: Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood. 91:4434–43.
6.
L. C, A. Z, L. K, R. V, P. M, C. A, et al. Expression of CCR9 beta-chemokine receptor is modulated in thymocyte differentiation and is selectively maintained in CD8(+) T cells from secondary lymphoid organs. Blood. 97:850–7.
7.
G. S, Y. N, Y. D, A. U, K. N, T. S, et al. Loss of SDF-1 receptor expression during positive selection in the thymus. Int Immunol. 10:1049–56.
8.
S. U, A. G, J.M F. Love P.E.: A role for CCR9 in T lymphocyte development and migration. J Immunol. 168:2811–9.
9.
J. P, S.E. P, A. L, H.T P. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol. 171:4521–7.
10.
J. D, S. S, R.N G. Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol Rev. 189:51–63.
11.
R. C, M S. Immunohistological location of host and donor-derived cells in the regenerating thymus of radiation bone marrow chimeras. Thymus. 6:15–26.
12.
M. S, K. K, T. N, N. F, T. T, O. Y, et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol. 161:417–27.
13.
A.M N. Bevan M.J.: Role of chemokines in thymocyte development. Semin Immunol. 12:445–55.
14.
H.E. P, L.L. R, D.M. T, S. W, N. C, R.R H. The fetal thymus is a site of self-tolerance induction. Nat Immunol. 5:674–83.
15.
A.H D. Emambocus N.: Overview of human thymus histology. J Pathol. 212:273–84.
16.
A.A. M, B. R, M S. Molecular architecture and organization of the thymic microenvironment: Implications for T cell development. J Immunol. 181:741–52.
17.
F.R. C, C.M. S, J.C. M, R. N, J.M S. McKinley E.T.: A role for chemokine receptors in thymic T-cell migration. Immunol Rev. 226:80–91.
18.
D. K, T. B, M.J B. Chemokine-mediated positioning of developing thymocytes. Immunol Rev. 240:99–112.
19.
I. M, M.J. P, E.J. R, K. L, D.B. F, W. L, et al. Essential role of chemokine receptor CCR7 in thymic development and migration of CD4+ and CD8+ T cells. Immunity. 34:710–22.
20.
S.J. S, B.M. S, S.L P. Glimcher L.H.: Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 21:713–58.
21.
H. W, J.K. M, A. S, M.J. B, J.A D. Aderem A.: A role for Rap1 in chemokine-induced T cell polarization. J Immunol. 176:4526–35.
22.
S.M. H, D.I. C, C.Y. K, F.W A. The role of T cell receptor diversity in T cell development and function. Adv Immunol. 40:1–36.
23.
C.D S. Sprent J.: T cell maturation and selection. Annu Rev Immunol. 12:639–74.
24.
M.A R. Crispe I.N.: The thymus (In Focus.
25.
Weiss L. Cell and Tissue Biology. A Text Book of Histology.
26.
M.H. R, G.I K. Pawlina W.: Histology: A Text and Atlas. In: Lippincott Williams and Wilkins.
27.
Weis A. Structure and function of the T cell antigen receptor. J Clin Invest. 86:1015.
28.
Gaudecker B. Functional histology of the human thymus. Anat Embriol. 183:1–15.
29.
E.F. L, S.E. P, H.E P. Petrie H.T.: Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med. 194:127–34.
30.
C.M. W, E.A R. The ins and outs of CCR7 in the thymus. J Exp Med. 200:405–9.
31.
W. K, P. R, B. D, R.E. S, H S. Borne A.E.G.: Immunol Today. 10:253–8.
32.
E.L. R, P.C. K, G. G, R.H L. Schlossman S.F.: Discrete stages of human intrathymic differentiation: Analysis of normal thymocytes and leukaemic lymphoblasts of T-cell lineage. Proc Nat Acad Sci USA. 77:1588–92.
33.
Nikolić-Žugić J. T cell development: Phenotypic and functional stages in the intrathymic development of alpha-beta T cells. Immunol Today. 12:65–70.
34.
J. S, D. L, E.K. G, J R. T-cell selection in the thymus. Immunol Rev. 101:173–90.
35.
A.K A. Lichtman A.H.: Basic Immunology.
36.
J.C. FP, F.M. C, C K. Le Douarin N.M.: Seeding of the 10-day mouse embryo thymic rudiment by lymphocyte precursors in vitro. J Immunol. 126:2310–6.
37.
E. D, D F. Goldschneider I.: Gated importation of prothymocytes by adult mouse thymus is coordinated with their periodic mobilization from bone marrow. J Immunol. 171:3568–75.
38.
D.L. F, E D. Goldschneider I.: The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J Exp Med. 193:365–74.
39.
S.S. P, H. W, L.J. P, A.M. Y, S T. Spangrude G.J.: L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood. 103:2990–6.
40.
Spits H. Early stages in human and mouse T-cell development. Curr Opin Immunol. 6:212–21.
41.
G.E. T, R. S, O.P. V, L. M, T E. Haemopoietic progenitor cell differentiation: flow cytometric assessment in bone marrow and thymus. Br J Haematol. 91:1006–16.
42.
M. K, I.L W. Akashi K.: Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 91:661–72.
43.
C. L, E. S, F. L, M.L. A, C. GC, B R. Major T cell progenitor activity in bone marrow-derived spleen colonies. J Exp Med. 195:919–29.
44.
C.H. M, I. A, M.L. S, Andrian U.H., B. R, Boehmer H., et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat Immunol. 4:866–73.
45.
M.D K. Functional anatomy of the thymus microenvironment. J Anat. 177:1–29.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by