Kliničko vrednovanje biohemijskih markera koštanog remodeliranja tokom evaluacije metaboličkih bolesti kostiju

Lj. Smiljić ,
Lj. Smiljić
M. Muratović ,
M. Muratović
J. Mitić ,
J. Mitić
T. Smilić ,
T. Smilić
B. Biševac
B. Biševac

Published: 15.01.2014.

Volume 42, Issue 2 (2013)

pp. 53-55;

Abstract

Koštani markeri su veoma korisno dijagnostiško sredstvo, mada je njihova klinička upotreba ograničena specifičnim tehničkim i analitičkim aspektima, kao i njihovom pre-analitičkom varijabilnošću. Koštani markeri, za razliku od mineralne gustine kosti, ukazuju na posebne aspekte kvaliteta kostiju, te stoga nude zasebnu i prognostičku perspektivu u ispitivanju promena mineralne gustine kosti I smanjivanju rizika od fraktura. Smanjenje nivoa koštanih markera usko je povezano sa smanjenjem rizika od frakture vratnih pršljenova usled korišćenja raloksifena, rizedronata i alendronata. Postoje brojne mogućnosti za korišćenje ovih markera u kratkoročnom praćenju toka lečenja osteoporoze, pored merenja mineralne koštane gustine, kako bi se otkrili pacijenti koji ne reaguju na terapiju.

Keywords

References

1.
Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. Journal of Bone and Mineral Research. 1996;11(2):150–9.
2.
Wiske PS, Epstein S, Bell NH, Queener SF, Edmondson J, Johnston CC. Increases in immunoreactive parathyroid hormone with age. New England Journal of Medicine. 1979;300(25):1419–21.
3.
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporosis International. 2006;17(3):319–36.
4.
Smilić L. Mehaničke i endokrine manifestacije na koštanom sistemu kod gojaznih. 2010.
5.
Smilić L, Radulović M, Smilić T, Muratović M. Adipokini kao predstavnici inflamatorne citokinske superfamilije i njihovo mesto u inflamatornim i imunološkim bolestima. Praxis Medica. 2009;37(3–4):135–40.
6.
Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.
7.
Schuit SE, Klift M, Weel AAM, Laet CDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone. 2004;34(1):195–202.
8.
Sarkar S, Reginster J, Crans GG, Diez-Perez A, Pinette KV, Delmas PD. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. Journal of Bone and Mineral Research. 2003;19(3):394–401.
9.
Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. Journal of Bone and Mineral Research. 1998;13(5):763–73.
10.
Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. Journal of Bone and Mineral Research. 1988;3(2):133–44.
11.
Ravn P, Clemmesen B, Christiansen C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Bone. 1999;24(3):237–44.
12.
Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology Bone. 2000;27(2):277–82.
13.
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. JAMA. 2001;285(6):785–95.
14.
Nielsen NM, Recke P, Hansen MA, Overgaard K, Christiansen C. Estimation of the effect of salmon calcitonin in established osteoporosis by biochemical bone markers. Calcified Tissue International. 1994;55(1):8–11.
15.
Michalska D, Stepan JJ, Basson BR, Pavo I. The effect of raloxifene following the discontinuation of long-term alendronate treatment of postmenopausal osteoporosis. Journal of Clinical Endocrinology & Metabolism. 2006;91(3):870–7.
16.
Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews. 2000;21(2):115–37.
17.
Ledger GA, Burritt MF, Kao PC, O’Fallon WM, Riggs BL, Khosla S. Role of parathyroid hormone in mediating nocturnal and age-related increases in bone resorption. Journal of Clinical Endocrinology & Metabolism. 1995;80(11):3304–10.
18.
Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Effect of age and dietary calcium Journal of Clinical Investigation. 1979;64(3):729–36.
19.
Durham R. Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: Evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. Journal of Bone and Mineral Research. 1991;6(2):125–32.
20.
Cuschieri A, Dubois F, Mouiel J, Mouret P, Becker H, Buess G, et al. Bone mineral content and mechanical strength of the femoral neck. Acta Orthopaedica Scandinavica. 1976;47(5):503–8.
21.
Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, et al. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. Journal of Clinical Endocrinology & Metabolism. 2003;88(9):4199–205.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by