Procena povezanosti nivoa ukupnih proteina pljuvačke, IgA pljuvačke i karijes iskustva u dece

A, Cvetković ,
A, Cvetković
A. Mitić ,
A. Mitić
T. Mitić ,
T. Mitić
I. Stošović Kalezić ,
I. Stošović Kalezić
M. Stevanović
M. Stevanović

Published: 15.01.2014.

Volume 42, Issue 2 (2013)

pp. 13-18;

Abstract

Infektivna priroda karijesa ukazuje na potencijalno učešće imunoloških faktora u procesu bolesti. Cilj istraživanja bio je da se utvrdi nivo koncentracija ukupnih proteina i IgA u pljuvački dece sa različitim karijes iskustvom i proceni povezanost individualnih vrednosti koncentracija ukupnih proteina, koncentracija IgA i vrednosti keps zuba. Ispitivanjem je obuhvaćeno 50 dece uzrasta 3-4 godine. Merenje rasprostranjenosti karijesa, izvršeno primenom keps indeksa. Određivanje koncentracije ukupnih proteina u nestimulisanoj pljuvački izvršeno je pomoću komercijalnog kita Micro BCATM Protein Assay Kit (PIERCE, USA), a koncentracije ukupnih IgA, dot blot metodom, korišćenjem mišijih monoklonskih anti-humana-IgA antitela (Nordic, Holandija). Odnos između koncentracija ukupnih proteina i vrednosti keps zuba, kao i ukupnih IgA i vrednosti keps zuba pokazao je statistički značajnu linearnu regresiju. Parcijalizovanjem uticaja ukupnih proteina potvrđena je statistički značajna korelacija između IgA i keps vrednosti (r=0,78; p<0,001). Kada je parcijalizovan uticaj ukupnih IgA, korelacija između ukupnih proteina i keps vrednosti bila je uočljivo manja (r=0,35; p=0,013). Kod dece sa sa većim brojem površina zuba zahvaćenih karijesom, više koncentracije IgA u pljuvački mogle bi biti u vezi sa sa povećanom proizvodnjom antitela u uslovima infekcije kariogenim mikroorganizmima.

Keywords

References

1.
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. *Critical Reviews in Oral Biology and Medicine*. 1994;5(3–4):203–48.
2.
Martins C, Buczynski AK, Maia LC, Siqueira WL, Castro GFBA. Salivary proteins as a biomarker for dental caries—a systematic review. *Journal of Dentistry*. 2013;41(1):2–8.
3.
Mcdonald RE, Avery DR, Stookey GK. Dental caries in the child and adolescent. In: *Dentistry for the child and adolescent*. 2004. p. 203–35.
4.
Muthu M, Amarlal D, Prabhu V, Shifa S. Quantitative assessment of IgA levels in the unstimulated whole saliva of caries-free and caries-active children. *Journal of Indian Society of Pedodontics and Preventive Dentistry*. 2008;26(4):158.
5.
Naspitz GM, Nagao AT, Mayer MP, Carneiro-Sampaio MM. Anti-*Streptococcus mutans* antibodies in saliva of children with different degrees of dental caries. *Pediatric Allergy and Immunology*. 1999;10(2):143–8.
6.
Newbrun E. Current concepts of caries etiology. In: *Cariology*. 1978. p. 43.
7.
Ranadheer E, Nayak UA, Reddy VN, Rao APV. The relationship between salivary IgA levels and dental caries in children. *Journal of the Indian Society of Pedodontics and Preventive Dentistry*. 2011;29(2):106–12.
8.
Roa NS, Chaves M, Gomez M, Jaramillo LM. Association of salivary proteins with dental caries in a Colombian population. *Acta Odontologica Latinoamericana*. 2008;2:69–75.
9.
Rudney JD. Does variability in salivary protein concentrations influence oral microbial ecology and oral health? *Critical Reviews in Oral Biology and Medicine*. 1995;6(4):343–67.
10.
Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. *Microbiology and Molecular Biology Reviews*. 1998;62(1):71–109.
11.
Seow WK. Biological mechanisms of early childhood caries. *Community Dentistry and Oral Epidemiology*. 1998;26(1 Suppl):8–27.
12.
Smith DJ, Taubman MA. Ontogeny of immunity to oral microbiota in humans. *Critical Reviews in Oral Biology and Medicine*. 1992;3(1–2):109–33.
13.
Streckfus CF, Bigler LR. Saliva as a diagnostic fluid. *Oral Diseases*. 2002;8(2):69–76.
14.
Tsai AI, Chen C, Li L, Hsiang C, Hsu K. Risk indicators for early childhood caries in Taiwan. *Community Dentistry and Oral Epidemiology*. 2006;34(6):437–45.
15.
Tulunoglu O, Demirtas S, Tulunoglu I. Total antioxidant levels of saliva in children related to caries, age, and gender. *International Journal of Paediatric Dentistry*. 2006;16(3):186–91.
16.
Houte J, Gibbs G, Butera C. Oral flora of children with “nursing bottle caries.” *Journal of Dental Research*. 1982;61(2):382–5.
17.
Organization WH. *Oral health surveys: Basic methods*. 1987;
18.
Zehetbauer S, Wojahn T, Hiller K, Schmalz G, Ruhl S. Resemblance of salivary protein profiles between children with early childhood caries and caries-free controls. *European Journal of Oral Sciences*. 2009;117(4):369–73.
19.
Health D, Services H. *Oral health in America: A report of the Surgeon General*. 2000.
20.
Alaluusua S. Longitudinal study of salivary IgA in children from 1 to 4 years old with reference to dental caries. *Scandinavian Journal of Dental Research*. 1983;91(3):163–8.
21.
Bagherian A, Jafarzadeh A, Rezaeian M, Ahmadi S, Rezaity MT. Comparison of the salivary immunoglobulin concentration levels between children with early childhood caries and caries-free children. *Iranian Journal of Immunology*. 2008;5(4):217–21.
22.
Bai J, Zhou Q, Bao Z, Li X, Qin M. Comparison of salivary proteins between children with early childhood caries and children without caries. *Zhonghua Kou Qiang Yi Xue Za Zhi = Chinese Journal of Stomatology*. 2007;42(1):21–3.
23.
Beyer CF. A “dot-immunobinding assay” on nitrocellulose membrane for the determination of the immunoglobulin class of mouse monoclonal antibodies. *Journal of Immunological Methods*. 1984;67(1):79–87.
24.
Brandtzaeg P. Synthesis and secretion of human salivary immunoglobulins. In: *Frontiers of Oral Biology*. 1998. p. 167–99.
25.
Caufield PW, Griffen AL. Dental caries. An infectious and transmissible disease. *Pediatric Clinics of North America*. 2000;47(5):1001–19.
26.
Cowman RA, Baron SS, Fitzgerald RJ, Danziger JL, Quintana JA. Growth inhibition of oral streptococci in saliva by anionic proteins from two caries-free individuals. *Infection and Immunity*. 1982;37:513–8.
27.
Farias DG, Bezerra ACB. Salivary antibodies, amylase and protein from children with early childhood caries. *Clinical Oral Investigations*. 2003;7(3):154–7.
28.
Amoudi N, Shukairy H, Hanno A. A comparative study of the secretory IgA immunoglobulins (s.IgA) in mothers and children with SECC versus a caries-free group children and their mothers. *Journal of Clinical Pediatric Dentistry*. 2007;32(1):53–6.
29.
Ge Y, Caufield PW, Fisch GS, Li Y. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. *Caries Research*. 2008;42(6):444–8.
30.
Kirtaniya BC, Chawla HS, Tiwari A, Ganguly NK, Sachdev V. Natural prevalence of antibody titres to GTF of *S. mutans* in saliva in high and low caries active children. *Journal of the Indian Society of Pedodontics and Preventive Dentistry*. 2009;27(3):135–8.
31.
Koga-Ito CY, Martins CAP, Balducci I, Jorge AOC. Correlation among mutans streptococci counts, dental caries, and IgA to *Streptococcus mutans* in saliva. *Brazilian Oral Research*. 2004;18(4):350–5.
32.
Lamkin MS, Oppenheim FG. Structural features of salivary function. *Critical Reviews in Oral Biology and Medicine*. 1993;4(3–4):251–9.
33.
Law V, Seow WK, Townsend G. Factors influencing oral colonization of mutans streptococci in young children. *Australian Dental Journal*. 2007;52(2):93-100 159.
34.
Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. *Advances in Dental Research*. 2000;14:40–7.
35.
Llena-Puy C. The role of saliva in maintaining oral health and as an aid to diagnosis. *Medicina Oral, Patología Oral y Cirugía Bucal*. 2006;11(5):449–55.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by