MODULATION OF POTASSIUM ASSIUM CHANNELS CHANNELS OF THE MYOMETRIUM MYOMETRIUM

R. Mitić ,
R. Mitić

Institute of Phаrmacology, Medical Faculty Priština , Kosovska Mitrovica , Kosovo*

D. Vukićević ,
D. Vukićević

Institute of Pаthology, Medical Faculty Priština , Kosovska Mitrovica , Kosovo*

G. Relić
G. Relić

Clinic of Gynecology and Obstetrics, Medical faculty Priština , Kosovska Mitrovica , Kosovo*

Published: 01.12.2008.

Volume 36, Issue 2 (2008)

pp. 97-101;

https://doi.org/10.70949/pramed200802256M

Abstract

Modulation of potassium channels is a recent modern approach to experimental and clinical investigation of potential better tocolytic medications. Assuming that potassium channels are by far the largest category of cellular ion channels, they are of crucial importance for the regulation of uterine smooth muscle tone. In the vast category of potassium channels, Maxi-K and BKCa (highly conductive, calcium-activated channels) are considered the main channels in the myometrium. It is believed that those have a key role in the modulation of uterine contractility and the homeostasis of myometrial calcium. The total number of Maxi-K channels is doubled during the onset of labor, compared to their number in pregnant and non-pregnant myometrium. We also keep getting more familiar with the characterization and control of myometrial potassium channels. Certain effects of pharmacological potassium channel modulators in isolated parts of both human and animal, both pregnant and non-pregnant myometrium will be presented in this article. Even though there have been a lot of studies on this subject, not many of them mentioned the role and modulation of potassium channels during human labor. We are still looking for the substances that will perform best in the treatment of possible miscarriages and early labor; although the use of beta sympathomimetics and calcium channel antagonists has been a major breakthrough in treatment of these pregnancy disorders. Using new tocolytic medications and a selective approach to cases of early labor, along with the use of other adequate measures, could improve the treatment of early labor in the future.

Keywords

References

1.
M.L L. Role of K+ channels in spontaneous electrical and mechanical activity of smooth muscle in the guinea-pig mesotubarium. J Physiol.
2.
K.G. K, C.C. S, G.E K. Jones S.W.: Inactivation of Kv2.1 potassium channels. Biophys J. Apr;74(4):1779-89.
3.
T. OP, F. GL, G.B G. Possani L.D.: A novel structural class of K+ channel blocking toxin from the scorpion Pandinus imperator. Biochem J. 1;315(Pt 3):977-81.
4.
S.A. G, C M. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. Oct;65(4):1613-9.
5.
F.M G. Reimann F.: Pharmacological modulation of K(ATP) channels. Biochem Soc Trans. Apr;30(2):333-9.
6.
J.J. S, H.G. S, J.J L. Jr.: Pharmacological modulation of I(Ks): potential for antiarrhythmic therapy. Curr Med Chem.
7.
A. J, A. T, W.K S. Potassium channel openers: therapeutic potential in cardiology and medicine. Expert Opin Pharmacother. Dec;2(12):1995-2010.
8.
Jahangir A. Terzić A.: K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol.
9.
M.L. A, S. A, R.N K. Down-regulation of the alpha- and beta-subunits of the calcium-activated potassium channel in human myometrium with parturition. Biology Of Reproduction.
10.
R.N. K, S.K. S, J.J M. Ashford M.L.J.: Ca2+-dependence and pharmacology of large-conductance K+ channels in nonlabour and labour uterine myocytes. American Journal of Physiology. 273:1721–31.
11.
I. P, M. H, Cromakalim. RP49356, pinacidil and minoxidil sulphate in the rat uterus and their antagonism by glibenclamide. Smooth Muscle Research Group Br J Pharmacol.
12.
I. P, E. M, S.J. D, M. H, H S. Effects of several potassium channel openers and glibenclamide on the uterus of the rat. Br J Pharmacol. 101(4):901–7.
13.
Shah J. Pant H.C.: Potassium-channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fractions isolated from the rat brain. Biochem J. 250(2):617–20.
14.
A.A. M, K.C D. Goyal R.K.: Involvement of K+ channels in the relaxant responses to various agonists in estrogen primed rat uterus. Indian J Physiol Pharmacol. 39(2):140–4.
15.
S.K. S, M.L A. Contribution of calcium-sensitive potassium channels to NS1619-induced relaxation in human pregnant myometrium. In: Human Reproduction.
16.
J.J. M, S.K. S, M.L A. Activation of large-conductance potassium channels in pregnant human myometrium by pinacidil. American Journal Of Obstetrics And Gynecology.
17.
M. H, I. P, E M. Tharmalingam S.: Potassium channel openers in the rat uterus. Pharmacol Toxicol. 65:128–33.
18.
G.M. M, M. C, K K. The effect of glibenclamide on spontaneous and oxytocin-induced contractions in isolated myometrium of non-pregnant rats. Reproductive Sciences. Jan;14(1):21-8.
19.
S. K, A K. Pothoulakis C.: Potassium channel blockers and myometrial contractility. J Clin Invest. Apr;101(7):1270-8.
20.
Silva T.A., M. C, M. R, R. K, M K. Regulation of ion channel expression and function in smooth muscle cells. Cardiovasc Res. Feb;45(2):421-9.
21.
T.C M. Ivison S.D.: Effect of potassium channel blockers on uterine contractility in the pregnant rat. Reprod Biol Endocrinol.
22.
D.R. B, W.H T. Wong S.Y.: Functional and pharmacological studies of potassium channels in isolated human uterine myocytes. J Pharmacol Exp Ther. (v;295(2):548-54).
23.
M.A B. Durell S.R.: Role of potassium channels in regulating uterine contractility. Am J Physiol.
24.
G.A. G, K.G. C, S. G, M. L, D. M, L.A. P, et al. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 57(4):473–508.
25.
D.R. L, O.N B. Brown M.J.: Clinical Pharmacology.
26.
Mitić R. Kalijumski kanali i modulatori kalijumskih kanala. Kosovska Mitrovica. :206-19,.
27.
N.M K. Management of hypertensive emergencies. Lancet. 344:1335–8.
28.
A. B, I. KJ, R. M, F. MH, R. S, N. K, et al. Pongs P.: Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA Channel transcript with homology to vertebrate Na channel. EMBO J. 6:3419–29.
29.
D.M. P, T.L. S, B.L. T, Y.N. J, L.Y J. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 237:749–53.
30.
K. K, K T. Kuba K.: A patch-clamp study on the muscarine-sensitive potassium channel in bullfrog sympathetic ganglion cells. J Physiol. 454:231–46.
31.
Pongs O. Potassium channel nomenclature: a personal view. Trends Pharmacol Sci. 14(12).
32.
K.G. C, G.A G. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci. 14(12).
33.
Spedding M. Vanhoutte P.M.: Channel nomenclature: IUPHAR recommendations. Trends Pharmacol Sci. 14(12):435–6.
34.
A.D. W, G.A. G, R. A, K.G. C, S. G, H. W, et al. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev. 57(4):463–72.
35.
M. M, S Z. Određena je struktura i otkriven mehanizam selektivnosti kalijumovog kanala. Hemijski pregled. 42(5):101–4.
36.
S.A. G, D.A. B, D. K, F. L, L.D. P, S. R, et al. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev. 57(4):527–40.
37.
N.P F. Lieb W.J.: Background K channels: an important target for volatile anesthetics. Nat Neurosci. 2:395–6.
38.
E.T H. Buxton I.L.: Expression of stretch-activated potassium channels in human myometrium. Info Proceedings of the Western Pharmacology Society. 48:44–8.
39.
Kažić T. Gojković Bukarica Lj.: Ion channels and drug development focus on potassium channels and their modulators. Medicine and Biology. 6(1):23–30.
40.
D.W. R, M.I S. Potassium channel modulators: scientific applications and therapeutic promise. J Med Chem.
41.
J.F. L, F. M, A. G, F. GL, J SM. Seutin V.: Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem. Apr;10(8):625-47.
42.
A. N, V. C, S C. Morelli I.: Natural modulators of large-conductance calcium-activated potassium channels. Planta Med. Oct;69(10):885-92.
43.
W. DB, H.H. H, M.P. K, N. M, S.P O. K(v)7 channels: function, pharmacology and channel modulators. Curr Top Med Chem. 6(10):999–1023.
44.
Lawson K. McKay N.G.: Modulation of potassium channels as a therapeutic approach. Curr Pharm Des. 12(4):459–70.
45.
B. M, A. K, M. S, T. K, S B. Apamin inhibits NO-induced relaxation of the spontaneous contractile activity of the myometrium from nonpregnant women. Reprod Biol Endocrinol. 1(8).

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by