Uloge endotelina u kardiovaskularnoj fiziologiji i patofiziologiji od njegovog otkrića do danas su neosporne. U srcu endotelini su značajni za procese razvoja, rasta i remodelovanja kao i za kontrolu kontraktilnosti i ritmičnosti. Srčane endotelne ćelije u endokardu i miokardnim kapilarima predstavljaju glavni izvor endotelina, a kardiomiociti su njihova primarna meta. Endotelin-1 je jedna od najpotentnijih poznatih supstanci sa pozitivnim inotropnim efektom, stoga endotelini imaju ključnu ulogu u srčanoj endotelno-miokardnoj interakciji. Endotelini su familija peptida od 21 amino kiseline koju čine endotelin-1, endotelin-2 i endotelin-3. Ostvaruju svoje efekte aktivacijom endotelinskih receptora, ETA i ETB, koji pripadaju familiji receptora vezanih za G proteine. ETA i ETB receptori su gusto distribuirani na kardiomiocitima, ćelijama provodnog sistema srca, koronarno vaskularnim i endokardno endotelnim ćelijama. U fiziološkim uslovima mesto sinteze endotelina su endotelne ćelije ali u patofiziološkim uslovima i veliki broj neendotelnih ćelija u srcu. Endotelin-1 ima pozitivno hronotropno i inotropno dejstvo. Administracija ET-1 uzrokuje koronarnu vazokonstrikciju, dovodi do ishemije miokarda i letalne ventrikularne aritmije. U akutnom infarktu miokarda ET-1 povećava miokardnu nekrozu i aritmije ali ima povoljan efekat na oporavak srca nakon infarkta u početnoj fazi remodelovanja srca. ET-1 preokreće acidozom indukovan negativan inotropan i luzitropan efekat, bez povećanja intracelularnog kalcijuma. Endotelin može da se suprotstavi aritmogenim efektima kateholamina. Tako, male koncentracije endotelina imaju protektivni efekat na srce. Osnovne indikacije za primenu antagonista endotelina jesu srčana insuficijencija, plućna hipertenzija i rezistentna arterijska hipertenzija. Dobro i pažljivo dizajnirane kliničke studije su potrebne za verifikaciju terapeutskih potencijala novih klasa lekova u kardiovaskularnoj medicini.
Brutsaert D. Cardiac Endothelial-Myocardial Signaling: Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity. Physiol Rev. 2003;59–115.
2.
Jangisawa M. A novel potent vasoconstriktor peptide produced by vascular endothelial cells. Nature. 1998;411–5.
3.
Mcclellan G, Weisberg A, Rose D, Winegrad S. Endothelial cell storage and release of endothelin as a cardioregulatory mechanism. Circ Res. 1994;85–96.
4.
Kim S, Cho K, Kim S. Modulation of endocardial natriuretic peptide receptors in right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 1999;2280-H2289.
5.
Adelino F. ET-1 increases distensibility of acutely loaded myocardium: a novel ETA and Na/H exchanger-mediated effect. Am J Physiol Heart Circ Physiol. 2003;1332-H1339.
6.
Ono K, Tsujimoto G, Sakamoto A, Eto K, Masaki T, Ozaki Y, et al. Endothelin-A receptor mediates cardiac inhibition by regulating calcium and potassium currents. Nature. 1994;301–4.
7.
Morimoto T, Hasegawa Z, Kaburagi S, Kakita T, Wada H, Yanazume T, et al. Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonists-responsive transcription of the endothelial-1 gene in cardiac myocytes. J Biol Chem. 2000;13721–6.
8.
Dhande P, Karandikar Y. Endothelin system: area of research and therapeutics. Asian J Pharm Biol Res. 2012;(3).
9.
Furchgott R, Zawadzki J. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;373–6.
10.
Yang B, Liu J. Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics. 2013;(3):157–68.
11.
Yanagisawa H. Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest. 2000;1373–82.
12.
Lariviere R. Increased endothelin-1 gene expression in the endothelium of coronary arteries and endocardium in the DOCAsalt hypertensive rat. J Mol Cell Cardiol. 1995;2123–31.
13.
Iwanaga Y. Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation. 1998;2065–73.
14.
Sonja S, Dragica R, Milanka M, Vojkan N, Goran T, Slađana S. Uticaj modifikatora metabolizma cikličnih nukleotida na kontraktilnost desne komore srca pacova s očuvanim i uklonjenim endokardnim endotelom. Srpski arhiv za celokupno lekarstvo. 2010;584–558.
15.
Smiljić S, Nestorović V. Modulatorna uloga azot oksida na srčane performance. Medicinski pregled broj. 2014;(10).
16.
Brutsaert D. Effects of damaging the endocardial surface on the mechanical performance of isolated cardiac muscle. Circ Res. 1988;358–66.
17.
Wang J. Endothelin 1 enhances myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium. Circ Res. 1991;582–9.
18.
Ono K. Endothelin-A receptor mediates cardiac inhibition by regulating calcium and potassium currents. Nature. 1994;301–4.
19.
Agapitov V, Haynes G. Role of endothelin in cardiovascular disease. Journal of Renin-Angiotensin-Aldosterone System. 2002;(1).
20.
Yanagisawa H. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;825–36.
21.
Nakajima Y, Nakamura H. Expression of endothelin-A receptor during endocardial cushion formation in the early chick cardiogenesis. Biomed Res. 1999;153–60.
22.
Pabla R, Curtis M. Effects of NO modulation on cardiac arrhythmias in the rat isolated heart. Circ Res. 1995;984–92.
23.
Molenaar P. Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium. Circ Res. 1993;526–38.
24.
James A, Xie L, Fujitani Y, Hayashi S, Horie M. Inhibition of the cardiac protin kinase A-dependent chloride conductance by endothelin-1. Nature. 1994;297–300.
25.
Araki M. Endothelin-1 as a protective factor against beta-adrenergic agonist-induced apoptosis in cardiac myocytes. J Am Coll Cardiol. 2000;1411–8.
26.
Becker R. Ventricular arrhythmias induced by endothelin-1 or by acute ischemia: a comparative analysis using threedimensional mapping. Cardiovasc Res. 2000;310–20.
27.
Kjekshus H. Regulation of ET: pulmonary release of ET contributes to increased plasma ET levels and vasoconstriction in CHF. Am J Physiol Heart Circ Physiol. 2000;1299-H1310.
28.
Belaidi E. Major Role for Hypoxia Inducible Factor-1 and the Endothelin System in Promoting Myocardial Infarction and Hypertension in an Animal Model of Obstructive Sleep Apne. 2009;(15):1309–17.
29.
Kolettis T, Barton M, Langleben D, Matsumura Y. Endothelin in coronary artery disease and myocardial infarction. Cardiol Rev. 2013;(5):249–56.
30.
Liu T, Qin M, Huang C. Long-term elevated plasma endothelin-1 damages the electrophysiological characteristics to increase ventricular arrhythmia susceptibility in the Langendorff-perfused rabbit hearts. Medical Journal of Wuhan University. 2013;(4):477–525.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.