Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, et al. The Clinical Assessment, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2006;43(9):1089–134.
2.
von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, et al. Borrelia burgdorferiRegulates Expression of Complement Regulator-Acquiring Surface Protein 1 during the Mammal-Tick Infection Cycle. Infection and Immunity. 2005;73(11):7398–405.
3.
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580–6.
4.
Lovrich SD, Jobe DA, Schell RF, Callister SM. Borreliacidal OspC Antibodies Specific for a Highly Conserved Epitope Are Immunodominant in Human Lyme Disease and Do Not Occur in Mice or Hamsters. Clinical and Vaccine Immunology. 2005;12(6):746–51.
5.
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune Escape Strategies of Borrelia Burgdorferi. Future Microbiology. 2017;12(13):1219–37.
6.
Wilson TC, Legler A, Madison KC, Fairley JA, Swick BL. Erythema Migrans. The American Journal of Dermatopathology. 2012;34(8):834–7.
7.
Gebbia JA, Coleman JL, Benach JL. BorreliaSpirochetes Upregulate Release and Activation of Matrix Metalloproteinase Gelatinase B (MMP-9) and Collagenase 1 (MMP-1) in Human Cells. Infection and Immunity. 2001;69(1):456–62.
8.
Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Critical Reviews in Microbiology. 2016;42(4):573–87.
9.
Lalosevic D, Lalosevic V, Stojsic-Milosavljevic A, Stojsic D. Borrelia-like organism in heart capillaries of patient with Lyme-disease seen by electron microscopy. International Journal of Cardiology. 2010;145(3):e96–8.
10.
Strle F, Stanek G. Clinical Manifestations and Diagnosis of Lyme Borreliosis. Current Problems in Dermatology. 2009. p. 51–110.
11.
Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, et al. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. GMS Ger Med Sci. 2017;15.
12.
Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks and Tick-borne Diseases. 2013;4(1–2):26–34.
13.
Ely JW, Rosenfeld S, Seabury Stone M. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702–10.
14.
Halberg M. Nummular Eczema. The Journal of Emergency Medicine. 2012;43(5):e327–8.
15.
Leung AKC, Barankin B. An Annular Lesion on the Elbow. Am Fam Physician. 2016;93(5):397–8.
16.
Weber K, Neubert U, Büchner SA. Erythema Migrans and Early Signs and Symptoms. Aspects of Lyme Borreliosis. 1993. p. 105–21.
17.
Niemeyer-Corbellini JP, Lupi O, Klotz L, Montelo L, Elston DM, Haddad V, et al. Environmental Causes of Dermatitis. Tropical Dermatology. 2017. p. 443–70.
18.
Rodríguez G, Vargas E, Abaúnza C, Cáceres S. Eritema necrolítico migratorio y glucagonoma pancreático. Biomédica. 36(2):176.
Strle F, Pleterski-Rigler D, Cimperman J, Pejovnik- Pustinek A, Ruzic E, Stanek G. Solitary borrelial lymphocytoma: Report of 36 cases. Infection. 1992;20(4):201–6.
21.
Glatz M, Resinger A, Semmelweis K, Ambros-Rudolph C, Müllegger R. Clinical Spectrum of Skin Manifestations of Lyme Borreliosis in 204 Children in Austria. Acta Dermato Venereologica. 2015;95(5):565–71.
22.
ÅSBRINK E, HOVMARK A. Early and Late Cutaneous Manifestations in Ixodes‐borne Borreliosis (Erythema Migrans Borreliosis, Lyme Borreliosis)a. Annals of the New York Academy of Sciences. 1988;539(1):4–15.
23.
Mabelane T, Basera W, Botha M, Thomas HF, Ramjith J, Levin ME. Predictive values of alpha‐gal IgE levels and alpha‐gal IgE: Total IgE ratio and oral food challenge‐proven meat allergy in a population with a high prevalence of reported red meat allergy. Pediatric Allergy and Immunology. 2018;29(8):841–9.
24.
Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers E, et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLOS Neglected Tropical Diseases. 10(3):e0004539.
25.
Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology. 7.
26.
Suppan J, Engel B, Marchetti‐Deschmann M, Nürnberger S. Tick attachment cement – reviewing the mysteries of a biological skin plug system. Biological Reviews. 2018;93(2):1056–76.
27.
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology. 7.
28.
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Frontiers in Cellular and Infection Microbiology. 7.
29.
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology. 3.
30.
BROSSARD M, WIKEL SK. Tick immunobiology. Parasitology. 2004;129(S1):S161–76.
31.
Cabezas-Cruz A, Hodžić A, Román-Carrasco P, Mateos-Hernández L, Duscher GG, Sinha DK, et al. Environmental and Molecular Drivers of the α-Gal Syndrome. Frontiers in Immunology. 10.
32.
Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, et al. Discovery of Alpha-Gal-Containing Antigens in North American Tick Species Believed to Induce Red Meat Allergy. Frontiers in Immunology. 10.
33.
de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A. The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasites & Vectors. 2019;12(1).
34.
NUTTALL PA, LABUDA M. Tick–host interactions: saliva-activated transmission. Parasitology. 2004;129(S1):S177–89.
35.
Nuttall PA. Tick saliva and its role in pathogen transmission. Wiener klinische Wochenschrift. 2023;135(7–8):165–76.
36.
Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-Borne Encephalitis Virus Transmission between Ticks Cofeeding on Specific Immune Natural Rodent Hosts. Virology. 1997;235(1):138–43.
37.
VOORDOUW MJ. Co-feeding transmission in Lyme disease pathogens. Parasitology. 2015;142(2):290–302.
38.
Hermance ME, Thangamani S. Tick–Virus–Host Interactions at the Cutaneous Interface: The Nidus of Flavivirus Transmission. Viruses. 10(7):362.
39.
Sonenshine DE, Macaluso KR. Microbial Invasion vs. Tick Immune Regulation. Frontiers in Cellular and Infection Microbiology. 7.
40.
Figlerowicz M, Urbanowicz A, Lewandowski D, Jodynis-Liebert J, Sadowski C. Functional Insights into Recombinant TROSPA Protein from Ixodes ricinus. PLoS ONE. 8(10):e76848.
41.
Mbow ML, Gilmore RD, Titus RG. An OspC-Specific Monoclonal Antibody Passively Protects Mice from Tick-Transmitted Infection by Borrelia burgdorferi B31. Infection and Immunity. 1999;67(10):5470–2.
42.
Ojaimi C, Brooks C, Casjens S, Rosa P, Elias A, Barbour A, et al. Profiling of Temperature-Induced Changes inBorrelia burgdorferiGene Expression by Using Whole Genome Arrays. Infection and Immunity. 2003;71(4):1689–705.
43.
Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436(7050):573–7.
44.
Hovius JW, Schuijt TJ, de Groot KA, Roelofs JJTH, Oei GA, Marquart JA, et al. Preferential Protection ofBorrelia burgdorferiSensu Stricto by a Salp15 Homologue inIxodes ricinusSaliva. The Journal of Infectious Diseases. 2008;198(8):1189–97.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.