More articles from Volume 50, Issue 1, 2021
A new scoring system for Covid-19 in patients on hemodialysis: Modified Early Warning score
Analysis of the occurrence, location and treatment of laryngeal carcinoma recurrence
Orthodontic treatment of a disto-occlusion with and favorable growth pattern
Sensory processing disorders in premature infants
Examination of early adaptation of newborns small for gestational age
Respiratory epithelium: Place of entry and / or defense against SARS-CoV-2 virus
,
Snežana Leštarević
,
Slađana Savić
Leonida Vitković
Predrag Mandić
Milica Mijović
Mirjana Dejanović
Dragan Marjanović
Ivan Rančić
Milan Filipović
Abstract
References
1.
Organisation WH. Middle East respiratory syndrome coronavirus (MERS-CoV. 2019.
2.
Wei G, Zheng N, Yu H, Wen L, Chun O, Jian H, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. Vol. 382. 2020. p. 1708–20.
3.
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Vol. 10, Acta Pharmaceutica Sinica B. 2020. p. 766–88.
4.
Mandelbaum RF. Scientists Create Atomic-Level Image of the New Coronavirus’s Potential Achilles Heel. 2020.
5.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Vol. 579, Nature. 2020. p. 270–3.
6.
Lai MMC, Cavanagh D. The Molecular Biology of Coronaviruses. Advances in Virus Research. 1997. p. 1–100.
7.
He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Vol. 324, Biochemical and Biophysical Research Communications. 2004. p. 773–81.
8.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Vol. 181, Cell. 2020. p. 271-280.e8.
9.
Shirato K, Kawase M, Matsuyama S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. Vol. 87, Journal of Virology. 2013. p. 12552–61.
10.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A Human Homolog of Angiotensin-converting Enzyme. Vol. 275, Journal of Biological Chemistry. 2000. p. 33238–43.
11.
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Vol. 87, Circulation Research. 2000.
12.
Warner FJ, Lew RA, Smith AI, Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting Enzyme 2 (ACE2), But Not ACE, Is Preferentially Localized to the Apical Surface of Polarized Kidney Cells. Vol. 280, Journal of Biological Chemistry. 2005. p. 39353–62.
13.
Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. Vol. 532, FEBS Letters. 2002. p. 107–10.
14.
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Vol. 14, Frontiers of Medicine. 2020. p. 185–92.
15.
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. Vol. 382, New England Journal of Medicine. 2020. p. 1653–9.
16.
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Vol. 12, International Journal of Oral Science. 2020.
17.
Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. Vol. 11, ACS Chemical Neuroscience. 2020. p. 1555–62.
18.
Bigiani A. Gustatory dysfunctions in COVID-19 patients: possible involvement of taste renin-angiotensin system (RAS). Vol. 277, European Archives of Oto-Rhino-Laryngology. 2020. p. 2395–2395.
19.
Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Vol. 56, European Respiratory Journal. 2020. p. 2001948.
20.
Sungnak W, Huang N, Bécavin C, Berg M, Queen R, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Vol. 26, Nature Medicine. 2020. p. 681–7.
21.
Chu H, Chan JFW, Wang Y, Yuen TTT, Chai Y, Hou Y, et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Vol. 71, Clinical Infectious Diseases. 2020. p. 1400–9.
22.
Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Vol. 203, The Journal of Pathology. 2004. p. 631–7.
23.
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Vol. 5, Signal Transduction and Targeted Therapy.
24.
FOLKERTS G, BUSSE WW, NIJKAMP FP, SORKNESS R, GERN JE. Virus-induced Airway Hyperresponsiveness and Asthma. Vol. 157, American Journal of Respiratory and Critical Care Medicine. 1998. p. 1708–20.
25.
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Vol. 38. 2020. p. 1–9.
26.
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Vol. 71, Clinical Infectious Diseases. 2020. p. 762–8.
27.
MATSUZAKI Z, OKAMOTO Y, SARASHINA N, ITO E, TOGAWA K, SAITO I. Induction of intercellular adhesion molecule‐1 in human nasal epithelial cells during respiratory syncytial virus infection. Vol. 88, Immunology. 1996. p. 565–8.
28.
Bolevich SB, Litvitsky PF, Grachev SV, Vorobyev SI, Orlova AS, Fokina MA, et al. Fundamental Basis of COVID-19 Pathogenesis. Vol. 21, Serbian Journal of Experimental and Clinical Research. 2020. p. 93–111.
29.
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Vol. 41, Biomedical Journal. 2018. p. 218–33.
30.
Benam KH, Denney L, Ho LP. How the Respiratory Epithelium Senses and Reacts to Influenza Virus. Vol. 60, American Journal of Respiratory Cell and Molecular Biology. 2019. p. 259–68.
31.
Lohr J, Knoechel B, Caretto D, Abbas AK. Balance of Th1 and Th17 effector and peripheral regulatory T cells. Vol. 11, Microbes and Infection. 2009. p. 589–93.
32.
Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Vol. 8, Nature Reviews Immunology. 2008. p. 337–48.
33.
Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CTK. Severe Acute Respiratory Syndrome (SARS) Coronavirus-Induced Lung Epithelial Cytokines Exacerbate SARS Pathogenesis by Modulating Intrinsic Functions of Monocyte-Derived Macrophages and Dendritic Cells. Vol. 83, Journal of Virology. 2009. p. 3039–48.
34.
Welliver RC. Immunologic mechanisms of virus induced wheezing and asthma. Vol. 135. p. 14–20.
35.
Martin L, Rochelle L, Fischer B, Krunkosky T, Adler K. Airway epithelium as an effector of inflammation: molecular regulation of secondary mediators. Vol. 10, European Respiratory Journal. 1997. p. 2139–46.
36.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Vol. 395, The Lancet. 2020. p. 497–506.
37.
Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Vol. 20, Nature Reviews Immunology. 2020. p. 271–2.
38.
Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Vol. 39, Clinical Rheumatology. 2020. p. 2055–62.
39.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. Vol. 80, Journal of Infection. 2020. p. 607–13.
40.
Lohmann-Matthes M, Steinmuller C, Franke-Ullmann G. Pulmonary macrophages. Vol. 7, European Respiratory Journal. 1994. p. 1678–89.
41.
Ahmadpour D, Ahmadpoor P. How the COVID-19 Overcomes the Battle? An Approach to Virus Structure. Vol. 14. 2020. p. 167–72.
42.
Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, et al. Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts. Vol. 7, PLoS ONE. p. e35876.
43.
To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Vol. 20. 2020. p. 565–74.
44.
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. Vol. 382, New England Journal of Medicine. 2020. p. 1177–9.
45.
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Vol. 27, Journal of Travel Medicine. 2020.
46.
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Vol. 372, Virology. 2008. p. 127–35.
47.
Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute Respiratory Syndrome–Coronavirus. Vol. 48, American Journal of Respiratory Cell and Molecular Biology. 2013. p. 742–8.
48.
Shornick LP, Wells AG, Zhang Y, Patel AC, Huang G, Takami K, et al. Airway Epithelial versus Immune Cell Stat1 Function for Innate Defense against Respiratory Viral Infection. Vol. 180, The Journal of Immunology. 2008. p. 3319–28.
49.
Wah J, Wellek A, Frankenberger M, Unterberger P, Welsch U, Bals R. Antimicrobial peptides are present in immune and host defense cells of the human respiratory and gastroinstestinal tracts. Vol. 324, Cell and Tissue Research. 2006. p. 449–56.
50.
Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Vol. 100, Blood. 2002. p. 1935–47.
51.
Robertson MJ. Role of chemokines in the biology of natural killer cells. Vol. 71, Journal of Leukocyte Biology. 2002. p. 173–83.
52.
Ferlazzo G, Münz C. NK Cell Compartments and Their Activation by Dendritic Cells. Vol. 172, The Journal of Immunology. 2004. p. 1333–9.
53.
Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Vol. 106, Blood. 2005. p. 3366–9.
54.
O’Connor GM, Hart OM, Gardiner CM. Putting the natural killer cell in its place. Vol. 117, Immunology. 2006. p. 1–10.
55.
Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Vol. 2, Nature Immunology. 2001. p. 675–80.
56.
Sivori S, Falco M, Chiesa MD, Carlomagno S, Vitale M, Moretta L, et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: Induction of cytokine release and cytotoxicity against tumors and dendritic cells. Vol. 101, Proceedings of the National Academy of Sciences. 2004. p. 10116–21.
57.
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Vol. 181, Cell. 2020. p. 1036-1045.e9.
58.
Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Vol. 178, Antiviral Research. 2020. p. 104791.
59.
Liu L, Lei X, Xiao X, Yang J, Li J, Ji M, et al. Epidemiological and Clinical Characteristics of Patients With Coronavirus Disease-2019 in Shiyan City, China. Vol. 10, Frontiers in Cellular and Infection Microbiology.
60.
Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Vol. 318, American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020. p. L215–25.
61.
Sauler M, Bazan IS, Lee PJ. Cell Death in the Lung: The Apoptosis–Necroptosis Axis. Vol. 81, Annual Review of Physiology. 2019. p. 375–402.
62.
Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. Contributions of High Mobility Group Box Protein in Experimental and Clinical Acute Lung Injury. Vol. 170, American Journal of Respiratory and Critical Care Medicine. 2004. p. 1310–6.
63.
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Vol. 19, Respiratory Research. 2018.
64.
Huang X, Xiu H, Zhang S, Zhang G. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Vol. 2018, Mediators of Inflammation. 2018. p. 1–8.
65.
Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Vol. 7, Nature Reviews Immunology. 2007. p. 803–15.
66.
Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New Markers of Inflammation and Endothelial Cell Activation. Vol. 108, Circulation. 2003. p. 1917–23.
67.
Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms Regulating Endothelial Permeability. Vol. 4, Pulmonary Circulation. 2014. p. 535–51.
68.
Romagnani S. T-cell subsets (Th1 versus Th2). Vol. 85, Annals of Allergy, Asthma & Immunology. 2000. p. 9–21.
69.
Rogge L, D’Ambrosio D, Biffi M, Penna G, Minetti LJ, Presky DH, et al. The Role of Stat4 in Species-Specific Regulation of Th Cell Development by Type I IFNs. Vol. 161, The Journal of Immunology. 1998. p. 6567–74.
70.
Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, et al. Selective Expression of an Interleukin-12 Receptor Component by Human T Helper 1 Cells. Vol. 185, The Journal of Experimental Medicine. 1997. p. 825–32.
71.
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Vol. 147, Pharmacology & Therapeutics. 2015. p. 123–35.
72.
Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. Vol. 7, Annals of Translational Medicine. 2019. p. 504–504.
73.
Lin S, Wu H, Wang C, Xiao Z, Xu F. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications. Vol. 9, Frontiers in Immunology.
74.
Stark K. Platelet‐neutrophil crosstalk and netosis. Vol. 3, HemaSphere. 2019. p. 89–91.
75.
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Vol. 26, Current Medicinal Chemistry. 2019. p. 4145–65.
76.
Freedman JE. Oxidative Stress and Platelets. Vol. 28, Arteriosclerosis, Thrombosis, and Vascular Biology. 2008.
77.
Violi F, Pignatelli P, Basili S. Nutrition, Supplements, and Vitamins in Platelet Function and Bleeding. Vol. 121, Circulation. 2010. p. 1033–44.
78.
Graham GJ, Handel TM, Proudfoot AEI. Leukocyte Adhesion: Reconceptualizing Chemokine Presentation by Glycosaminoglycans. Vol. 40, Trends in Immunology. 2019. p. 472–81.
79.
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Vol. 96, Physiological Reviews. 2016. p. 1211–59.
80.
Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Vol. 124, Blood. 2014. p. 2625–34.
81.
Kornerup KN, Salmon GP, Pitchford SC, Liu WL, Page CP. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. Vol. 109, Journal of Applied Physiology. 2010. p. 758–67.
82.
Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Vol. 121, Blood. 2013. p. 1008–15.
83.
Maugeri N, Rovere-Querini P, Evangelista V, Godino C, Demetrio M, Baldini M, et al. An Intense and Short-Lasting Burst of Neutrophil Activation Differentiates Early Acute Myocardial Infarction from Systemic Inflammatory Syndromes. Vol. 7, PLoS ONE. p. e39484.
84.
Hosseini E, Ghasemzadeh M. Intravascular leukocyte migration through platelet thrombi: directing leukocytes to sites of vascular injury. Vol. 113, Thrombosis and Haemostasis. 2015. p. 1224–35.
85.
Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Vol. 17, International Immunopharmacology. 2013. p. 1176–84.
86.
Assinger A, Buchberger E, Laky M, Esfandeyari A, Brostjan C, Volf I. Periodontopathogens induce soluble P-selectin release by endothelial cells and platelets. Vol. 127, Thrombosis Research. 2011. p. e20–6.
87.
Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in Inflammation: Regulation of Leukocyte Activities and Vascular Repair. Vol. 5, Frontiers in Immunology.
88.
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Vol. 13, Nature Medicine. 2007. p. 463–9.
89.
Katz JN, Kolappa KP, Becker RC. Beyond Thrombosis. Vol. 139, Chest. 2011. p. 658–68.
90.
Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Vol. 126, Blood. 2015. p. 242–6.
91.
Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Vol. 99, Journal of Leukocyte Biology. 2016. p. 153–62.
92.
Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Vol. 12, Journal of Thrombosis and Haemostasis. 2014. p. 2074–88.
93.
Zucoloto AZ, Jenne CN. Platelet-Neutrophil Interplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection. Vol. 6, Frontiers in Cardiovascular Medicine.
94.
Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Vol. 16, Cell Communication and Signaling. 2018.
95.
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Vol. 107, Proceedings of the National Academy of Sciences. 2010. p. 15880–5.
96.
Farrar JD, Asnagli H, Murphy KM. T helper subset development: roles of instruction, selection, and transcription. Vol. 109, Journal of Clinical Investigation. 2002. p. 431–5.
97.
Xiu S, Dick A, Ju H, Mirzaie S, Abdi F, Cocklin S, et al. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Vol. 63, Journal of Medicinal Chemistry. 2020. p. 12256–74.
98.
Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). Vol. 58, EBioMedicine. 2020. p. 102887.
99.
N LŽ. COVID-19 i vitamin D - postoji li poveznica? Vol. 29. 2020. p. 219–24.
Citation
Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Article metrics
Google scholar:
See link
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.