Regulation of uterine activity during pregnancy is due to the nature of the loss of humoral sympathetic, holinergical and peptidergic inervation. So far, nothing found that would indicated that the mechanism of premature birth and its pathogenesis different from the normal mechanism of delivery, except for different maturity of the fetus. Since a large number of substances that participate in the contraction and relaxation of miometrium (estrogen, progesterone, cortisol, etc.). Today's modern research has focused on prostaglandins and oxytocin, or their interaction. Accepting oxytocin as substance initiation deliveries it is difficult for two reasons: the level of oxytocin in the blood can not lift before the delivery and release of oxytocin remains constant during pregnancy. Oxytocin probably plays a role in support delivery for decidual cells stimulates the synthesis of uterine PGF2a.
References
1.
Mujović VM. Medicinska fiziologija. Beograd 2012 Agencija za marketing i zeppelin reklame DON VAS EAN 8691242965.
FUCHS A, FUCHS F. Endocrinology of human parturition: a review. Vol. 91, BJOG: An International Journal of Obstetrics & Gynaecology. 1984. p. 948–67.
5.
Relić G. Uporedno ispitivanje klasičnih tokolitika i antagonista kalcijuma na tok i ishod prematurnih porođaja [magistarska teza. 1993.
6.
Relić G. Savremena tokolitička terapija i prevremeni porođaj [monografija. 2007.
7.
porođaji RGP. U: XIV Kongres ginekologa i obstetričara Srbije i Crne Gore. 2005.
8.
Crowther CA, Ashwood P, McPhee AJ, Flenady V, Tran T, Dodd JM, et al. Vaginal progesterone pessaries for pregnant women with a previous preterm birth to prevent neonatal respiratory distress syndrome (the PROGRESS Study): A multicentre, randomised, placebo-controlled trial. Vol. 14, PLOS Medicine. p. e1002390.
9.
Norman JE, Marlow N, Messow CM, Shennan A, Bennett PR, Thornton S, et al. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial. Vol. 387, The Lancet. 2016. p. 2106–16.
10.
Kuon RJ, Voß P, Rath W. Progesterone for the Prevention of Preterm Birth – an Update of Evidence-Based Indications. Vol. 79, Geburtshilfe und Frauenheilkunde. 2019. p. 844–53.
11.
ST BA, E B, L S. Comparative Study of Vaginal versus Intramuscular Progesterone in the Prevention of Preterm Delivery: A Randomized Clinical Trial. 2015.
12.
Oler E, Eke AC, Hesson A. Meta‐analysis of randomized controlled trials comparing 17α‐hydroxyprogesterone caproate and vaginal progesterone for the prevention of recurrent spontaneous preterm delivery. Vol. 138, International Journal of Gynecology & Obstetrics. 2017. p. 12–6.
13.
Elimian A, Smith K, Williams M, Knudtson E, Goodman JR, Escobedo MB. A randomized controlled trial of intramuscular versus vaginal progesterone for the prevention of recurrent preterm birth. Vol. 134, International Journal of Gynecology & Obstetrics. 2016. p. 169–72.
14.
Rath W, Kehl S. Acute Tocolysis – a Critical Analysis of Evidence-Based Data. Vol. 78, Geburtshilfe und Frauenheilkunde. 2018. p. 1245–55.
15.
Di Renzo GC, Cabero Roura L, Facchinetti F, Helmer H, Hubinont C, Jacobsson B, et al. Preterm Labor and Birth Management: Recommendations from the European Association of Perinatal Medicine. Vol. 30, The Journal of Maternal-Fetal & Neonatal Medicine. 2017. p. 2011–30.
16.
Bogavac M, Relić G, Maticki-Sekulić M, Pavlov-Mirković M, Radulović A, Grujić Z, et al. Tocolitic therapy in prevention of preterm labor. In.
17.
Furcron AE, Romero R, Plazyo O, Unkel R, Xu Y, Hassan SS, et al. Vaginal progesterone, but not 17α-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Vol. 213, American Journal of Obstetrics and Gynecology. 2015. p. 846.e1-846.e19.
18.
Relić G. Primena savremenih tokolitika u terapiji prevremenih porođaja. U: XXI simpozijum Sekcije za perinatalnu medicinu Srpskog lekarskog društva. 2006.
19.
Vogel JP, Chawanpaiboon S, Moller AB, Watananirun K, Bonet M, Lumbiganon P. The global epidemiology of preterm birth. Vol. 52, Best Practice & Research Clinical Obstetrics & Gynaecology. 2018. p. 3–12.
20.
Aleksić S, Bogavac M, Relić G, Ćurčić N. Nifedipine-a tocolytic used in the treatment of imminent abortion and preternm labor. Vol. 11. 2002. p. 195.
21.
Kyvernitakis I, Maul H, Bahlmann F. Controversies about the Secondary Prevention of Spontaneous Preterm Birth. Vol. 78, Geburtshilfe und Frauenheilkunde. 2018. p. 585–95.
22.
Mujović VM. Autakoidni sistem[Monografija. 1998.
23.
Mitić R, Vukičević D, Relić G. Modulacija kalijumskih kanala miometrijuma. Vol. 36. 2008. p. 97–101.
24.
Mujović VM, Gross WJ, Fisher JW. Blockade of erythropoietin (ESF) and prostaglandin (PGE) production in dogs following renal artery constriction (RAC) and hypoxia by indomethacin (I. Vol. 34. 1975.
25.
Hackney DN, Olson‐Chen C, Thornburg LL. What Do We Know about the Natural Outcomes of Preterm Labour? A Systematic Review and Meta‐Analysis of Women without Tocolysis in Preterm Labour. Vol. 27, Paediatric and Perinatal Epidemiology. 2013. p. 452–60.
26.
Berghella V, Navathe R. Tocolysis for Acute Preterm Labor: Where Have We Been, Where Are We Now, and Where are We Going? Vol. 33, American Journal of Perinatology. p. 229–35.
27.
Mujović VM, Medenica RD, Powell D, Mukerjee S, Rosić NK, Velkovski SD. Interferons and prostaglandins in platelet-tumor cell interaction. In 1996.
28.
Mujović VM. Prostaglandini i drugi eikosanoidi: biosinteza, fiziologija i primena u ginekologiji i medicini. In 2007. p. 45–77.
29.
L HA, L SR, M KA. Antenatal exposure to indomethacin increased the risk of severe intraventricular haemorrhage, necrotizing enterocolitis, and periventricular leukomalacia: a systematic review with metaanalysis. Vol. 2015. 212AD.
30.
Werner R, Winkler M, Holger M. Klinische Erfahrungen mit Atosiban: Neuer Oxitocin-Rezeptorantagonist zur Wehenhemmung. Vol. 97. 2000. p. 3427-2878-2557.
31.
Doret M, Kayem G. La tocolyse en cas de menace d’accouchement prématuré à membranes intactes. Vol. 45, Journal de Gynécologie Obstétrique et Biologie de la Reproduction. 2016. p. 1374–98.
Sentilhes L, Sénat MV, Ancel PY, Azria E, Benoist G, Blanc J, et al. Prevention of spontaneous preterm birth: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Vol. 210, European Journal of Obstetrics & Gynecology and Reproductive Biology. 2017. p. 217–24.
34.
Vogel JP, Oladapo OT, Manu A, Gülmezoglu AM, Bahl R. New WHO recommendations to improve the outcomes of preterm birth. Vol. 3, The Lancet Global Health. 2015. p. e589–90.
35.
Moutquin JM, Sherman D, Cohen H, Mohide PT, Hochner-Celnikier D, Fejgin M, et al. Double-blind, randomized, controlled trial of atosiban and ritodrine in the treatment of preterm labor: A multicenter effectiveness and safety study. Vol. 182, American Journal of Obstetrics and Gynecology. 2000. p. 1191–9.
36.
van Baaren GJ, Wilms F, Oudijk M, Kwee A, Porath M, Scheepers H, et al. Randomized Comparison of Nifedipine and Placebo in Fibronectin-Negative Women with Symptoms of Preterm Labor and a Short Cervix (APOSTEL-I Trial). Vol. 32, American Journal of Perinatology. p. 451–60.
37.
Flenady V, Wojcieszek AM, Papatsonis DN, Stock OM, Murray L, Jardine LA, et al. Calcium channel blockers for inhibiting preterm labour and birth. Vol. 2014, Cochrane Database of Systematic Reviews.
38.
Akerlund L. Involvement of oxytocin and vasopresin in the pathophysiology of preterm labor and primary dysmenorrhea. Vol. 139):1392002. 2002. p. 359–65.
39.
GOODWIN T, VALENZUELA G, SILVER H, CREASY G. Dose ranging study of the oxytocin antagonist atosiban in the treatment of preterm labor. Vol. 88, Obstetrics & Gynecology. 1996. p. 331–6.
40.
van Vliet EOG, Nijman TAJ, Schuit E, Heida KY, Opmeer BC, Kok M, et al. Nifedipine versus atosiban for threatened preterm birth (APOSTEL III): a multicentre, randomised controlled trial. Vol. 387, The Lancet. 2016. p. 2117–24.
41.
Domokos D, Ducza E, Falkay G, Gaspar R. Alteration in expressions of RhoA and Rho-kinases during pregnancy in rats: their roles in uterine contractions and onset of labour. Vol. 68. 2017. p. 439–51.
42.
Bhatiya S, Choudhury S, Gari M, Singh P, Shukla A, Garg SK. Myometrial Calcium and Potassium Channels Play a Pivotal Role in Chromium-Induced Relaxation in Rat Uterus: an In Vitro Study. Vol. 198, Biological Trace Element Research. 2020. p. 198–205.
43.
Sokolovic D, Drakul D, Orescanin-Dusic Z, Tatalovic N, Pecelj M, Milovanovic S, et al. The role of potassium channels and calcium in the relaxation mechanism of magnesium sulfate on the isolated rat uterus. Vol. 71, Archives of Biological Sciences. 2019. p. 5–11.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.